Introduction
Using optimization techniques to deal with data separation and data analysis goes back to more than thirty years ago. According to O. L. Mangasarian, his group has formulated linear programming as a large margin classifier in 1960’s. Nowadays classical optimization techniques have found widespread use in solving various data mining problems, among which convex optimization and mathematical programming have occupied the center-stage. With the advantage of convex optimization’s elegant property of global optimum, many problems can be cast into the convex optimization framework, such as Support Vector Machines, graph-based manifold learning, and clustering, which can usually be solved by convex Quadratic Programming, Semi-Definite Programming or Eigenvalue Decomposition. Another research emphasis is applying mathematical programming into the classification. For the last twenty years, the researchers have extensively applied quadratic programming into classification, known as V. Vapnik’s Support Vector Machine, as well as various applications.
As time goes by, new problems emerge constantly in data mining community, such as Time-Evolving Data Mining, On-Line Data Mining, Relational Data Mining and Transferred Data Mining. Some of these recently emerged problems are more complex than traditional ones and are usually formulated as nonconvex problems. Therefore some general optimization methods, such as gradient descents, coordinate descents, convex relaxation, have come back to the stage and become more and more popular in recent years. From another side of mathematical programming, In 1970’s, A. Charnes and W.W. Cooper initiated Data Envelopment Analysis where a fractional programming is used to evaluate decision making units, which is economic representative data in a given training dataset. From 1980’s to 1990’s, F. Glover proposed a number of linear programming models to solve discriminant problems with a small sample size of data. Then, since 1998, multiple criteria linear programming (MCLP) and multiple criteria quadratic programming (MQLP) has also extended in classification. All of these methods differ from statistics, decision tree induction, and neural networks. So far, there are more than 200 scholars around the world have been actively working on the field of using optimization techniques to handle data mining problems.
This workshop will present recent advances in optimization techniques for, especially new emerging, data mining problems, as well as the real-life applications among. One main goal of the workshop is to bring together the leading researchers who work on state-of-the-art algorithms on optimization based methods for modern data analysis, and also the practitioners who seek for novel applications. In summary, this workshop will strive to emphasize the following aspects:
Topics
This workshop intends to promote the research interests in the connection of optimization and data mining as well as real-life applications among the growing data mining communities. It calls for papers to the researchers in the above interface fields for their participation in the conference. The workshop welcomes both high-quality academic (theoretical or empirical) and practical papers in the broad ranges of optimization and data mining related topics including, but not limited to the following:
In addition to attract the technical papers, this workshop will particularly encourage the submissions of optimization-based data mining applications, such as credit assessment management, information intrusion, bio-informatics, etc. as follows:
As OEDM has been lasting for nearly 20 years and attracted a great number of high quality papers, we will invite the former attendees to present their lastest researches in our workshop.
We have also organized several international conferences including International Conference on Information Technology and Quantitative Management(ITQM 2013-2023), International Conference on Data Science(ICDS 2014-2023). We will invite the former attendees to contribute their papers to our workshop.
See attachment ‘OEDM'23 - CFP.pdf’
Important Dates
• September 3, 2023: Workshop papers submission (Workshop submission page is here.)
• September 24, 2023: Notification of workshop papers acceptance to authors
• October 1, 2023: Camera-ready deadline and copyright form
• December 1-4, 2023: Conference dates
• December 4, 2023: Workshop date
All dates are 11:59pm Beijing Time
Submissions
Authors are invited to submit original papers, which have not been published elsewhere and which are not currently under consideration for another journal, conference or workshop. Paper submissions should be limited to a maximum of ten (10) pages, in the IEEE 2-column format (link), including the bibliography and any possible appendices. Submissions longer than 10 pages will be rejected without review. All submissions will be triple-blind reviewed by the Program Committee based on technical quality, relevance to scope of the conference, originality, significance, and clarity. The following sections give further information for authors. Please refer to the ICDM regular submission requirment for more information: http://www.cloud-conf.net/icdm2023/call-for-papers.html
The authors shall omit their names from the submission. For formatting templates with author and institution information, simply replace all these information items in the template by “Anonymous”.
In the submission, the authors should refer to their own prior work like the prior work of any other author, and include all relevant citations. This can be done either by referring to their prior work in the third person or referencing papers generically. For example, if your name is Smith and you have worked on clustering, instead of saying “We extend our earlier work on distance-based clustering (Smith 2019),” you might say “We extend Smith’s earlier work (Smith 2019) on distance-based clustering.” The authors shall exclude citations to their own work which is not fundamental to understanding the paper, including prior versions (e.g., technical reports, unpublished internal documents) of the submitted paper. Hence, do not write: “In our previous work [3]” as it reveals that citation 3 is written by the current authors. The authors shall remove mention of funding sources, personal acknowledgments, and other such auxiliary information that could be related to their identities. These can be reinstituted in the camera-ready copy once the paper is accepted for publication. The authors shall make statements on well-known or unique systems that identify an author, as vague in respect to identifying the authors as possible. The submitted files should be named with care to ensure that author anonymity is not compromised by the file names. For example, do not name your submission “Smith.pdf”, instead give it a name that is descriptive of the title of your paper, such as “ANewApproachtoClustering.pdf” (or a shorter version of the same).
Algorithms and resources used in a paper should be described as completely as possible to allow reproducibility. This includes experimental methodology, empirical evaluations, and results. Authors are strongly encouraged to make their code and data publicly available whenever possible. In addition, authors are strongly encouraged to also report, whenever possible, results for their methods on publicly available datasets.
All manuscripts are submitted as full papers and are reviewed based on their scientific merit. There is no separate abstract submission step. Manuscripts must be submitted electronically in the online submission system online submission system. Accepted papers will be published in the conference proceedings by the IEEE Computer Society Press. We do not accept email submissions.
Note that all accepted papers will be included in the IEEE ICDM 2023 Workshops Proceedings volume published by IEEE Computer Society Press, and will also be included in the IEEE Xplore Digital Library. Therefore, papers must not have been accepted for publication elsewhere or be under review for another workshop, conferences or journals.
Past Record
The Workshop on Optimization Based Techniques for Emerging Data Mining Problems has gathered the key organizers of the previous ICDM workshops on Optimization Based Techniques for data mining problems from 2005 to 2021. This workshop (OEDM’22) is a series workshop and continuation of the theme of ICDM 2009-2021 Workshop Optimization Based Techniques for Emerging Data Mining Problems, ICDM 2005-2007 Workshop Optimization-based Data Mining Techniques with Applications.
The Statistics results from 2005-2020 shown that our workshop was a success and more than 100 people attended the workshop. The workshop builds on the success of previous workshops and provides a unique platform for researchers and practitioners working on data mining using optimization based techniques to share and disseminate recent research results. Information about previous workshops can be found:
Organizers
General Co-Chair:
Prof. Shi Yong
, University of Nebraska at Omaha /Chinese Academy of Sciences
Email:yshi@ucas.ac.cn
Address:Room 203, Building 6, No. 80 Zhongguancun East Road, Haidian District, Beijing P.R.China, 100190.
Short Bio:Received the Ph.D. degree in management science and computer system from The University of Kansas, Lawrence, KS, USA. He is currently a professor with the Chinese Academy of Sciences, Beijing, China, where he serves as the Director of Research Center on Fictitious Economy and Data Science. He is also a Professor and a Distinguished Chair of Information Technology with the College of Information Science and Technology, University of Nebraska Omaha, Omaha, USA. His research interests include data mining, information overload, optimal system designs, multiple-criteria decision making, decision support systems, and information and telecommunications management. Dr. Shi is the Editor-in-Chief of International Journal of Information Technology and Decision Making and Annals of Data Science.
Program Co-Chairs:
Prof. Chris Ding
, University of Texas at Arlington
Email:chqding@cse.uta.edu
Address:500 UTA Blvd, Room 640.
Short Bio:Is professor in University of Texas at Arlington. His research areas are machine learning / data mining, bioinformatics, information retrieval, web link analysis, and high performance computing. His research are supported by National Science Foundation grants and University of Texas Regents STARS Award. Professor Ding has published about 200 papers that were cited over 25500 times (google scholar).
Prof. Yingjie Tian
Chinese Academy of Sciences
Email:tyj@ucas.ac.cn
Address:Room 205, Building 6, No. 80 Zhongguancun East Road, Haidian District, Beijing P.R.China, 100190.
Short Bio:Is the professor of Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences. He received his first degree in Mathematics (1994), Masters in Applied Mathematics (1997), Ph.D. in Management Science and Engineering. His research interests include support vector machines, optimization theory and applications, data mining.
Assosiate Prof. Zhiquan Qi
, Chinese Academy of Sciences,
Email:qizhiquan@ucas.ac.cn
Address:Room 215, Building 6, No. 80 Zhongguancun East Road, Haidian District, Beijing P.R.China, 100190.
Short Bio:received a Master degree and Ph.D. degree in College of Science from China Agricultural University in 2006 and 2011. Currently he is a associate professor of Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences. His research interests include data mining, and the application in weak label learning.
Assistant Prof. Fan Meng
Peking University
Email:mengfan@pku.edu.cn
Address:Room 504, Fang Li Bangqin Building, No.5 Yiheyuan Road Haidian District, Beijing, P.R.China 100871
Short Bio:received his Bachelor degree in Department of Information Management and Information System of Peking University in 2012, and Ph.D. degree Management Science and Engeering from University of Chinese Academy of Sciences. Currently he is an assistant professor with Peking University. His research interests currently focus on business intelligence, financial forecasting and smart library.
Tentative PC